3.5.47 \(\int \frac {\sec ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx\) [447]

3.5.47.1 Optimal result
3.5.47.2 Mathematica [A] (verified)
3.5.47.3 Rubi [A] (verified)
3.5.47.4 Maple [A] (verified)
3.5.47.5 Fricas [A] (verification not implemented)
3.5.47.6 Sympy [F]
3.5.47.7 Maxima [F(-2)]
3.5.47.8 Giac [B] (verification not implemented)
3.5.47.9 Mupad [B] (verification not implemented)

3.5.47.1 Optimal result

Integrand size = 21, antiderivative size = 130 \[ \int \frac {\sec ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=-\frac {6 a b^2 \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2} d}+\frac {b \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}-\frac {\sec (c+d x) \left (3 a b-\left (a^2+2 b^2\right ) \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 d} \]

output
-6*a*b^2*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/(a^2-b^2)^(5/2)/ 
d+b*sec(d*x+c)/(a^2-b^2)/d/(a+b*sin(d*x+c))-sec(d*x+c)*(3*a*b-(a^2+2*b^2)* 
sin(d*x+c))/(a^2-b^2)^2/d
 
3.5.47.2 Mathematica [A] (verified)

Time = 1.03 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.25 \[ \int \frac {\sec ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\frac {-\frac {6 a b^2 \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2}}+\sin \left (\frac {1}{2} (c+d x)\right ) \left (\frac {1}{(a+b)^2 \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}+\frac {1}{(a-b)^2 \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}\right )-\frac {b^3 \cos (c+d x)}{(a-b)^2 (a+b)^2 (a+b \sin (c+d x))}}{d} \]

input
Integrate[Sec[c + d*x]^2/(a + b*Sin[c + d*x])^2,x]
 
output
((-6*a*b^2*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^2 - b^2)^( 
5/2) + Sin[(c + d*x)/2]*(1/((a + b)^2*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2] 
)) + 1/((a - b)^2*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))) - (b^3*Cos[c + d 
*x])/((a - b)^2*(a + b)^2*(a + b*Sin[c + d*x])))/d
 
3.5.47.3 Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.15, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {3042, 3173, 25, 3042, 3345, 27, 3042, 3139, 1083, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cos (c+d x)^2 (a+b \sin (c+d x))^2}dx\)

\(\Big \downarrow \) 3173

\(\displaystyle \frac {b \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))}-\frac {\int -\frac {\sec ^2(c+d x) (a-2 b \sin (c+d x))}{a+b \sin (c+d x)}dx}{a^2-b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {\sec ^2(c+d x) (a-2 b \sin (c+d x))}{a+b \sin (c+d x)}dx}{a^2-b^2}+\frac {b \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a-2 b \sin (c+d x)}{\cos (c+d x)^2 (a+b \sin (c+d x))}dx}{a^2-b^2}+\frac {b \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))}\)

\(\Big \downarrow \) 3345

\(\displaystyle \frac {-\frac {\int \frac {3 a b^2}{a+b \sin (c+d x)}dx}{a^2-b^2}-\frac {\sec (c+d x) \left (3 a b-\left (a^2+2 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}}{a^2-b^2}+\frac {b \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {3 a b^2 \int \frac {1}{a+b \sin (c+d x)}dx}{a^2-b^2}-\frac {\sec (c+d x) \left (3 a b-\left (a^2+2 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}}{a^2-b^2}+\frac {b \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {3 a b^2 \int \frac {1}{a+b \sin (c+d x)}dx}{a^2-b^2}-\frac {\sec (c+d x) \left (3 a b-\left (a^2+2 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}}{a^2-b^2}+\frac {b \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))}\)

\(\Big \downarrow \) 3139

\(\displaystyle \frac {-\frac {6 a b^2 \int \frac {1}{a \tan ^2\left (\frac {1}{2} (c+d x)\right )+2 b \tan \left (\frac {1}{2} (c+d x)\right )+a}d\tan \left (\frac {1}{2} (c+d x)\right )}{d \left (a^2-b^2\right )}-\frac {\sec (c+d x) \left (3 a b-\left (a^2+2 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}}{a^2-b^2}+\frac {b \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {\frac {12 a b^2 \int \frac {1}{-\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )^2-4 \left (a^2-b^2\right )}d\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )}{d \left (a^2-b^2\right )}-\frac {\sec (c+d x) \left (3 a b-\left (a^2+2 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}}{a^2-b^2}+\frac {b \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {-\frac {6 a b^2 \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (c+d x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{3/2}}-\frac {\sec (c+d x) \left (3 a b-\left (a^2+2 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}}{a^2-b^2}+\frac {b \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))}\)

input
Int[Sec[c + d*x]^2/(a + b*Sin[c + d*x])^2,x]
 
output
(b*Sec[c + d*x])/((a^2 - b^2)*d*(a + b*Sin[c + d*x])) + ((-6*a*b^2*ArcTan[ 
(2*b + 2*a*Tan[(c + d*x)/2])/(2*Sqrt[a^2 - b^2])])/((a^2 - b^2)^(3/2)*d) - 
 (Sec[c + d*x]*(3*a*b - (a^2 + 2*b^2)*Sin[c + d*x]))/((a^2 - b^2)*d))/(a^2 
 - b^2)
 

3.5.47.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3139
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = Fre 
eFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + 2*b*e*x + a 
*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] && NeQ 
[a^2 - b^2, 0]
 

rule 3173
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + 
f*x])^(m + 1)/(f*g*(a^2 - b^2)*(m + 1))), x] + Simp[1/((a^2 - b^2)*(m + 1)) 
   Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 
p + 2)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b 
^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*p]
 

rule 3345
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(g*Co 
s[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c - a*d - (a*c - b*d)* 
Sin[e + f*x])/(f*g*(a^2 - b^2)*(p + 1))), x] + Simp[1/(g^2*(a^2 - b^2)*(p + 
 1))   Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m*Simp[c*(a^2*(p + 
 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[e + f*x], 
x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && Lt 
Q[p, -1] && IntegerQ[2*m]
 
3.5.47.4 Maple [A] (verified)

Time = 1.05 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.22

method result size
derivativedivides \(\frac {-\frac {2 b^{2} \left (\frac {\frac {b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a}+b}{a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a}+\frac {3 a \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}}\right )}{\left (a -b \right )^{2} \left (a +b \right )^{2}}-\frac {1}{\left (a +b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {1}{\left (a -b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d}\) \(158\)
default \(\frac {-\frac {2 b^{2} \left (\frac {\frac {b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a}+b}{a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a}+\frac {3 a \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}}\right )}{\left (a -b \right )^{2} \left (a +b \right )^{2}}-\frac {1}{\left (a +b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {1}{\left (a -b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d}\) \(158\)
risch \(\frac {2 i \left (2 a^{3} {\mathrm e}^{i \left (d x +c \right )}+3 i a^{2} b \,{\mathrm e}^{2 i \left (d x +c \right )}+i a^{2} b +2 i b^{3}+3 a \,b^{2} {\mathrm e}^{3 i \left (d x +c \right )}+b^{2} a \,{\mathrm e}^{i \left (d x +c \right )}\right )}{\left (1+{\mathrm e}^{2 i \left (d x +c \right )}\right ) \left (-i b \,{\mathrm e}^{2 i \left (d x +c \right )}+2 a \,{\mathrm e}^{i \left (d x +c \right )}+i b \right ) \left (a^{2}-b^{2}\right )^{2} d}-\frac {3 b^{2} a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a \sqrt {-a^{2}+b^{2}}+a^{2}-b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}+\frac {3 b^{2} a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a \sqrt {-a^{2}+b^{2}}-a^{2}+b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}\) \(301\)

input
int(sec(d*x+c)^2/(a+b*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/d*(-2*b^2/(a-b)^2/(a+b)^2*((b^2/a*tan(1/2*d*x+1/2*c)+b)/(a*tan(1/2*d*x+1 
/2*c)^2+2*b*tan(1/2*d*x+1/2*c)+a)+3*a/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan( 
1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2)))-1/(a+b)^2/(tan(1/2*d*x+1/2*c)-1)-1/( 
a-b)^2/(tan(1/2*d*x+1/2*c)+1))
 
3.5.47.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 538, normalized size of antiderivative = 4.14 \[ \int \frac {\sec ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\left [-\frac {2 \, a^{4} b - 4 \, a^{2} b^{3} + 2 \, b^{5} + 2 \, {\left (a^{4} b + a^{2} b^{3} - 2 \, b^{5}\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (a b^{3} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a^{2} b^{2} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (-\frac {{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} - 2 \, {\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) - 2 \, {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b - 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} - b^{7}\right )} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{7} - 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} - a b^{6}\right )} d \cos \left (d x + c\right )\right )}}, -\frac {a^{4} b - 2 \, a^{2} b^{3} + b^{5} + {\left (a^{4} b + a^{2} b^{3} - 2 \, b^{5}\right )} \cos \left (d x + c\right )^{2} - 3 \, {\left (a b^{3} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a^{2} b^{2} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \sin \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) - {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} \sin \left (d x + c\right )}{{\left (a^{6} b - 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} - b^{7}\right )} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{7} - 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} - a b^{6}\right )} d \cos \left (d x + c\right )}\right ] \]

input
integrate(sec(d*x+c)^2/(a+b*sin(d*x+c))^2,x, algorithm="fricas")
 
output
[-1/2*(2*a^4*b - 4*a^2*b^3 + 2*b^5 + 2*(a^4*b + a^2*b^3 - 2*b^5)*cos(d*x + 
 c)^2 + 3*(a*b^3*cos(d*x + c)*sin(d*x + c) + a^2*b^2*cos(d*x + c))*sqrt(-a 
^2 + b^2)*log(-((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - 
b^2 - 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/( 
b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)) - 2*(a^5 - 2*a^3*b^2 
 + a*b^4)*sin(d*x + c))/((a^6*b - 3*a^4*b^3 + 3*a^2*b^5 - b^7)*d*cos(d*x + 
 c)*sin(d*x + c) + (a^7 - 3*a^5*b^2 + 3*a^3*b^4 - a*b^6)*d*cos(d*x + c)), 
-(a^4*b - 2*a^2*b^3 + b^5 + (a^4*b + a^2*b^3 - 2*b^5)*cos(d*x + c)^2 - 3*( 
a*b^3*cos(d*x + c)*sin(d*x + c) + a^2*b^2*cos(d*x + c))*sqrt(a^2 - b^2)*ar 
ctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c))) - (a^5 - 2*a^3* 
b^2 + a*b^4)*sin(d*x + c))/((a^6*b - 3*a^4*b^3 + 3*a^2*b^5 - b^7)*d*cos(d* 
x + c)*sin(d*x + c) + (a^7 - 3*a^5*b^2 + 3*a^3*b^4 - a*b^6)*d*cos(d*x + c) 
)]
 
3.5.47.6 Sympy [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (a + b \sin {\left (c + d x \right )}\right )^{2}}\, dx \]

input
integrate(sec(d*x+c)**2/(a+b*sin(d*x+c))**2,x)
 
output
Integral(sec(c + d*x)**2/(a + b*sin(c + d*x))**2, x)
 
3.5.47.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sec ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(sec(d*x+c)^2/(a+b*sin(d*x+c))^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.5.47.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 271 vs. \(2 (125) = 250\).

Time = 0.35 (sec) , antiderivative size = 271, normalized size of antiderivative = 2.08 \[ \int \frac {\sec ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=-\frac {2 \, {\left (\frac {3 \, {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )} a b^{2}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} - b^{2}}} + \frac {a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + a^{2} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, a b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, a^{2} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, a^{3} b - a b^{3}}{{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - a\right )}}\right )}}{d} \]

input
integrate(sec(d*x+c)^2/(a+b*sin(d*x+c))^2,x, algorithm="giac")
 
output
-2*(3*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1 
/2*c) + b)/sqrt(a^2 - b^2)))*a*b^2/((a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2 
)) + (a^4*tan(1/2*d*x + 1/2*c)^3 + a^2*b^2*tan(1/2*d*x + 1/2*c)^3 + b^4*ta 
n(1/2*d*x + 1/2*c)^3 + 3*a*b^3*tan(1/2*d*x + 1/2*c)^2 + a^4*tan(1/2*d*x + 
1/2*c) - 3*a^2*b^2*tan(1/2*d*x + 1/2*c) - b^4*tan(1/2*d*x + 1/2*c) - 2*a^3 
*b - a*b^3)/((a^5 - 2*a^3*b^2 + a*b^4)*(a*tan(1/2*d*x + 1/2*c)^4 + 2*b*tan 
(1/2*d*x + 1/2*c)^3 - 2*b*tan(1/2*d*x + 1/2*c) - a)))/d
 
3.5.47.9 Mupad [B] (verification not implemented)

Time = 7.10 (sec) , antiderivative size = 303, normalized size of antiderivative = 2.33 \[ \int \frac {\sec ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=-\frac {\frac {2\,\left (2\,a^2\,b+b^3\right )}{{\left (a^2-b^2\right )}^2}-\frac {6\,b^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{a^4-2\,a^2\,b^2+b^4}+\frac {2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (-a^4+3\,a^2\,b^2+b^4\right )}{a\,{\left (a^2-b^2\right )}^2}-\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (a^4+a^2\,b^2+b^4\right )}{a\,{\left (a^2-b^2\right )}^2}}{d\,\left (-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )}-\frac {6\,a\,b^2\,\mathrm {atan}\left (\frac {\frac {3\,a\,b^2\,\left (2\,a^4\,b-4\,a^2\,b^3+2\,b^5\right )}{{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}}+\frac {6\,a^2\,b^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^4-2\,a^2\,b^2+b^4\right )}{{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}}}{6\,a\,b^2}\right )}{d\,{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}} \]

input
int(1/(cos(c + d*x)^2*(a + b*sin(c + d*x))^2),x)
 
output
- ((2*(2*a^2*b + b^3))/(a^2 - b^2)^2 - (6*b^3*tan(c/2 + (d*x)/2)^2)/(a^4 + 
 b^4 - 2*a^2*b^2) + (2*tan(c/2 + (d*x)/2)*(b^4 - a^4 + 3*a^2*b^2))/(a*(a^2 
 - b^2)^2) - (2*tan(c/2 + (d*x)/2)^3*(a^4 + b^4 + a^2*b^2))/(a*(a^2 - b^2) 
^2))/(d*(a + 2*b*tan(c/2 + (d*x)/2) - a*tan(c/2 + (d*x)/2)^4 - 2*b*tan(c/2 
 + (d*x)/2)^3)) - (6*a*b^2*atan(((3*a*b^2*(2*a^4*b + 2*b^5 - 4*a^2*b^3))/( 
(a + b)^(5/2)*(a - b)^(5/2)) + (6*a^2*b^2*tan(c/2 + (d*x)/2)*(a^4 + b^4 - 
2*a^2*b^2))/((a + b)^(5/2)*(a - b)^(5/2)))/(6*a*b^2)))/(d*(a + b)^(5/2)*(a 
 - b)^(5/2))